新型冠状病毒感染者不同时期的排毒特征
陈曦1, 张义成2#, 张洁1, 周敏1, 何庆1, 罗杰1, 肖崇坤3, 张正东1,*
1.自贡市疾病预防控制中心,四川 自贡 643000
2.枣庄市疾病预防控制中心,山东 枣庄 277000
3.四川省疾病预防控制中心,四川 成都 610000
*通信作者:张正东,E-mail:595768202@qq.com

作者简介:陈曦(1982—),男,硕士,主任医师,研究方向:疾病控制。张义成(1974—),男,硕士,副主任医师,研究方向:疾病控制。#张义成同为第一作者

摘要

新型冠状病毒(简称新冠病毒)感染者排毒是一个连续动态过程,根据排毒特征可分为潜隐期、排毒初期、排毒高峰期和衰减期。感染新冠病毒后,感染者一般在前1~3 d处于潜隐期,表现为连续的核酸检测结果为阴性,这一时期没有传染性,密切接触者感染风险很低;排毒初期表现为短时间内核酸检测Ct值快速下降,临床症状逐渐显现。感染者在这一时期的传染性逐渐上升,其密切接触者感染的风险也逐渐增加,但尚处于感染早期,排毒可能性低,次级密切接触者感染风险低;排毒高峰表现为核酸检测Ct值维持低水平,临床症状明显。这一时期感染者传染性最强,接触者感染风险最高,应适当扩大密切接触者判定范围;衰减期表现为核酸检测Ct值逐渐升高,临床症状逐渐消失。这一时期感染者传染性逐渐下降至消失。在一起暴发疫情中,处于衰减期的感染者更可能是传播链中的早期感染者。如果在无新型冠状病毒肺炎流行的地区发现衰减期感染者,则提示当地疫情已有一段时间的传播,规模可能较大。根据排毒特征可以更加科学、精确地判定风险人员,在最大限度控制风险的同时减少防疫资源的浪费。

关键词: 新型冠状病毒; 排毒; 动态; 核酸检测
中图分类号:R563.1 文献标志码:A 文章编号:1009-9727(2023)03-310-04
Characteristics of viral shedding in people infected with SARS-CoV-2 during difference stages
CHEN Xi1, ZHANG Yi-cheng2, ZHANG Jie1, ZHOU Min1, HE Qing1, LUO Jie1, XIAO Chong-kun3, ZHANG Zheng-dong1
1. Zigong Center for Disease Control and Prevention, Zigong, Sichuan 643000, China
2. Zaozhuang Center for Disease Control and Prevention, Zaozhuang, Shandong 277000, China
3. Sichuan Provincial Center for Disease Control and Prevention, Chengdu, Sichuan 610000, China
Corresponding author: ZHANG Zheng-dong, E-mail: 595768202@qq.com
Abstract

Viral shedding of SARS-CoV-2 is a continuous dynamic process, which can be divided into latent stage, initial stage, peak stage and decreasing stage according to the characteristics of viral shedding. After being infected with SARS-CoV-2, the infected person generally stays in the latent period for 1-3 days, which is characterized by continuous negative nucleic acid test results and no infectiousness, and the risk of infection for close contacts is very low. At the initial stage of viral shedding is characterized by a rapid decline in the Ct value of nucleic acid tests in a short time, and clinical symptoms gradually appear. The infectiousness of the infected person gradually increases during this period, and the risk of infection for close contacts also gradually increases, but it is still in the early stage of infection, the possibility of viral shedding is low, and the risk of infection of secondary close contacts is low. The peak of viral shedding is characterized by low Ct value in nucleic acid test and obvious clinical symptoms;during this period, the infected person is the most infectious, and the risk of infection of the contact is the highest, so the scope of close contacts should be expanded appropriately. The decreasing period is characterized by the gradual increase of Ct value of nucleic acid test and the gradual disappearance of clinical symptoms; during this period, the infectiousness of the infected person gradually decreases to disappear. In an outbreak, an infected person in the decreasing phase is more likely to be an early infected person in the transmission chain. If infected individuals in the decreasing phase are found in an area without a SARS-CoV-2 epidemic, it suggests that the local outbreak epidemic has been spreading for some time and may be larger in scale. According to the characteristics of viral shedding, risk personnel can be determined more scientifically and accurately, so as to minimize the risk and reduce the waste of epidemic prevention resources.

Keyword: Severe acute respiratory syndrome coronavirus 2; viral shedding; dynamic; nucleic acid test

新型冠状病毒(Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, 简称新冠病毒)感染者的排毒是一个连续的动态过程, 不同时期排毒量存在极大变化[1, 2]。感染者排毒量越大, 其接触者被感染的可能性也越大[3, 4, 5], 判断感染者的排毒状态对控制排查管控接触者的范围大小具有重要参考作用。本文将新冠感染过程分为潜隐期、排毒初期、排毒高峰期和衰减期(表1), 对感染排毒不同时期的变化特征进行了探讨, 旨在帮助流行病学调查人员判断感染者传播能力大小, 更准确的划定风险人群和管控范围。

表1 新冠感染者不同排毒时期特征及风险 Table 1 Characteristics and risk of viral shedding of SARS-COV-2 infected persons in different stage
1 潜隐期

新冠病毒无症状感染者也具有传染性, 潜伏期内可传染他人[6, 7, 8], 因此在判断传播风险时候一般考虑潜隐期, 即从感染新冠病毒后到开始排毒所经历的时期(图1A)。实际工作中, 这段时间指从感染病毒起, 直至首次核酸阳性检出, 通常为感染后2~5 d[9, 10]。感染病毒后24 h之内可认为处于潜隐期[11, 12, 13]。感染24 h以上, 感染者如果有连续核酸检测, 两次阴性结果之间的时间可认为处于潜隐期(假设核酸检测结果可靠)。

潜隐期的感染者不具备传染性(排除衣物、皮肤等被污染而机械携带活病毒的可能), 感染者在这个时间段接触人员的风险极低。如果感染者在这个时间段被发现和管理, 产生次代传播风险低。

图1 新冠感染者排毒时间特征分布图
注:* . 表格中只针对确诊病例, 无症状感染者4个时期均无临床症状, 其余项目与确诊病例相同。
Fig. 1 Distribution of viral shedding time characteristics of SARS-CoV-2 infected patients
Note:* . In the table, confirmed cases and asymptomatic infected persons have no clinical symptoms in the four stages, and other items are the same as confirmed cases.

2 排毒初期

感染者从开始排毒到排毒量接近顶峰前所经历的时期可称为排毒初期(图1B)。这个时期的初期感染者往往无自觉症状, 但在连续核酸检测过程中, 感染者Ct值短时间(1~3 d)内快速下降, 临床症状也可能随之出现[12, 13, 14, 15]

在这段时间中感染者排毒量从少到多, 传染性也不断增强。因为这一时期持续时间短, 如果感染者在这一时间即被发现, 其接触者即使感染, 极有可能尚处于潜隐期, 次级密切接触者风险低。

3 排毒高峰期

从感染者排毒量将达到最高峰值起并维持较高水平时期可称为排毒高峰(图1C)。这一时期具有以下特征:(1)排毒量高(Ct值低); (2)感染者可能存在明显临床症状; (3)相同暴露时段的接触者阳性比例高。

这一时期一般在发病前1 d持续到发病后 3~5 d, 感染者这个时期的传染性最强[16, 17], 感染者这一时期的接触者和风险活动场所的判定范围可适当扩大。如果感染者在这一时期被发现并管理, 同住、同办公室等与病例有持续接触的密切接触者有很大可能已经感染, 甚至已经进入排毒期, 其次密也存在感染风险, 同样需要尽快排查和管控。

4 衰减期

感染者排毒量明显下降至排毒停止的时期称为衰减期(图1D)。这一时期感染者排毒量明显下降, 表现为连续的核酸检测Ct值逐渐升高, 临床症状明显减轻。如果有肺炎症状, 影像上可表现为病灶开始吸收[18, 19, 20]

感染者在这个时期的传染性已经明显下降, 随着排毒量的下降, 其接触者风险逐渐降低。如果感染者在这一时期才被发现, 提示疫情发现晚, 之前时期的密切接触者有很大可能已经感染并已经进入排毒状态, 次密感染风险同样较高, 甚至已经发生社区传播。在获得密接核酸检测结果前, 可将次密暂时按照密接标准扩大范围和强化管理, 或启动区域性人员管控和核酸检测。

5 其他辅助检验

除了核酸检测, 抗原和抗体检测也可以作为判断排毒时期的辅助证据以供综合判断(图2)。抗原检测和核酸检测均是直接检测感染者样本中的病毒, 两种检测结果趋势一致, 但抗原检测因敏感性较核酸检测低, 呈现阳性时间较核酸晚[21, 22]。抗体检测是检测的感染者针对新冠病毒所产生的抗体, 其中IgM抗体先出现, 在出现症状后2周左右达到顶峰, 随后滴度下降。IgG抗体晚于IgM出现, 在出现症状后2~7周达到顶峰并长期维持高水平[23, 24, 25]。接种疫苗对抗体的影响与实际感染类似。接种过疫苗一段时间后, IgG可长期呈阳性, 但如果发现IgM阳性或IgG滴度快速升高, 可考虑近期感染[26, 27]

图2 SARS-CoV-2感染初期抗原抗体检测结果特征变化Fig. 2 Changes in antigen and antibody detection characteristics in the initial period of SARS-CoV-2 infected patients

6 结论

密切接触者追踪和隔离是新冠病毒防控的最有效方法之一[28, 29, 30, 31, 32], 暴露时候感染者的排毒量是影响其接触者继发风险的最重要因素之一[33]。通过分析感染者核酸检测Ct值以及抗原、抗体, 可以对感染者所处的排毒时期进行综合判断, 评估感染者同时期密切接触者和次密接感染风险, 从而更加科学精确的判定风险人员, 在最大限度控制风险的同时减少防疫资源的浪费。

利益冲突声明 所有作者声明不存在利益冲突

编辑:陈景丽 黄艳

参考文献
[1] WOUDENBERG T, EBERLE U, MAROSEVIC D, et al. Detection and viral RNA shedding of SARS-CoV-2 in respiratory specimens relative to symptom onset among COVID-19 patients in Bavaria, Germany - Addendum[J]. Epidemiol Infect, 2021, 149: e167. [本文引用:1]
[2] FONTANA L M, VILLAMAGNA A H, SIKKA M K, et al. Understand ing viral shedding of severe acute respiratory coronavirus virus 2 (SARS-CoV-2): review of current literature[J]. Infect Control Hosp Epidemiol, 2021, 42(6): 659-668. [本文引用:1]
[3] CERAMI C, POPKIN-HALL Z R, RAPP T, et al. Household transmission of severe acute respiratory syndrome coronavirus 2 in the United States: living density, viral load, and disproportionate impact on communities of color[J]. Clin Infect Dis, 2022, 74(10): 1776-1785. [本文引用:1]
[4] LEE L Y W, ROZMANOWSKI S, PANG M, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity by viral load, S gene variants and demographic factors, and the utility of lateral flow devices to prevent transmission[J]. Clin Infect Dis, 2022, 74(3): 407-415. [本文引用:1]
[5] PHILLIPS M C, QUINTERO D, WALD-DICKLER N, et al. SARS-CoV-2 cycle threshold (Ct) values predict future COVID-19 cases[J]. J Clin Virol, 2022, 150/151: 105153. [本文引用:1]
[6] ZHIRONG, LIU. The assessment of transmission efficiency and latent infection period in asymptomatic carriers of SARS-CoV-2 infection[J]. Int J Infect Dis, 2020, 99: 325-327. [本文引用:1]
[7] LI Y X, TAN J, TAN S Y, et al. Infection rate and factors affecting close contacts of COVID-19 cases: a systematic review[J]. J Evidence Based Medicine, 2022, 15(4): 385-397. [本文引用:1]
[8] LIU C, LU J H, LI P H, et al. A Comparative study on epidemiological characteristics, transmissibility, and pathogenicity of three COVID-19 outbreaks caused by different variants[J/OL]. Int J Infect Dis, 2023(2023-01-31). https://www.ijidonline.com/article/S1201-9712(23)00039-5/fulltext. [本文引用:1]
[9] XIN H L, LI Y, WU P, et al. Estimating the latent period of coronavirus disease 2019 (COVID-19)[J]. Clin Infect Dis, 2022, 74(9): 1678-1681. [本文引用:1]
[10] KANG M, XIN H L, YUAN J, et al. Transmission dynamics and epidemiological characteristics of SARS-CoV-2 Delta variant infections in Guangdong, China, May to June 2021[J]. Euro Surveill, 2022, 27(10): 2100815. [本文引用:1]
[11] 王笑笑, 王凤英, 朱列波, . 一起由Omicron变异株BA. 5. 2引起的义乌市新冠病毒感染疫情传播特征分析[J/OL]. 中国公共卫生, 2023: 1-7. (2023-02-03). https://kns.cnki.net/kcms/detail/21.1234.r.20230202.1522.004.html. [本文引用:1]
[12] 张华一, 曹海兰, 李永红, . 2021 年青海省一起职业暴露引起的新型冠状病毒肺炎聚集性疫情的流行病学调查[J/OL]. 疾病监测, 2023: 1-6. (2023-01-11). https://kns.cnki.net/kcms/detail/11.2928.R.20230110.1504.001.html. [本文引用:2]
[13] 王建新, 张绍基. 山东省胶州市一起新冠肺炎聚集性疫情调查分析[J]. 预防医学论坛, 2022, 28(11): 860-862.
WANG J X, ZHANG S J. Investigation and analysis on a cluster of COVID-19, Jiaozhou city, Shand ong Province[J]. Prev Med Tribune, 2022, 28(11): 860-862. (in Chinese) [本文引用:2]
[14] 江梦圆, 陈银, 吴斌, . 2020年江苏省306例不同特征新冠肺炎病例咽拭子病毒载量分布[J]. 江苏预防医学, 2022, 33(4): 371-374.
JIANG M Y, CHEN Y, WU B, et al. Distribution of throat swab viral load of 306 covid-19 cases with different characteristics in Jiangsu Province in 2020[J]. Jiangsu J Prev Med, 2022, 33(4): 371-374. (in Chinese) [本文引用:1]
[15] 黄春明, 胡中伟, 黄韫, . 新型冠状病毒Delta变异株早期病毒载量与临床特征的关系[J]. 实用医学杂志, 2022, 38(5): 532-536.
HUANG C M, HU Z W, HUANG Y, et al. Relationship between early viral load and clinical characteristics of Delta variant of SARS-Cov-2[J]. J Pract Med, 2022, 38(5): 532-536. (in Chinese) [本文引用:1]
[16] HE X, LAU E H Y, WU P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19[J]. Nat Med, 2020, 26(5): 672-675. [本文引用:1]
[17] BAE S, KIM J Y, LIM S Y, et al. Dynamics of viral shedding and symptoms in patients with asymptomatic or mild COVID-19[J]. Viruses, 2021, 13(11): 2133. [本文引用:1]
[18] 郁义星, 李敏, 顾岚, . 基于临床和CT特征的诺模图早期识别重症新型冠状病毒肺炎的研究[J]. 临床放射学杂志, 2021, 40(6): 1106-1111.
YU Y X, LI M, GU L, et al. The study on early identification of severe COVID-19 based on the nomogram incorporating clinical and CT features[J]. J Clin Radiol, 2021, 40(6): 1106-1111. (in Chinese) [本文引用:1]
[19] 王苏丹, 李宏军, 张岩岩. 新型冠状病毒肺炎患者胸部CT影像动态变化及临床特征分析[J]. 北京医学. 2022. 44(10): 907-913.
WANG S D, LI H J, ZHANG Y Y. Dynamic changes in chest CT imaging and clinical features of COVID-19 patients[J]. Beijing Med J, 2022, 44(10): 907-913. (in Chinese) [本文引用:1]
[20] 颜颖, 宋丽君, 魏巍, . 新型冠状病毒肺炎患者临床转归与临床及影像指标的相关性研究[J]. 临床和实验医学杂志, 2022, 21(12): 1317-1321.
YAN Y, SONG L J, WEI W, et al. Correlation between clinical outcomes and clinical and imaging indicators in patients with COVID-19[J]. J Clin Exp Med, 2022, 21(12): 1317-1321. (in Chinese) [本文引用:1]
[21] TREGGIARI D, PIUBELLI C, CALDRER S, et al. SARS-CoV-2 rapid antigen test in comparison to RT-PCR targeting different genes: a real-life evaluation among unselected patients in a regional hospital of Italy[J]. J Med Virol, 2022, 94(3): 1190-1195. [本文引用:1]
[22] KRÜTTGEN A, CORNELISSEN C G, DREHER M, et al. Comparison of the SARS-CoV-2 Rapid antigen test to the real star Sars-CoV-2 RT PCR kit[J]. J Virol Methods, 2021, 288: 114024. [本文引用:1]
[23] SONG K H, KIM D M, LEE H, et al. Dynamics of viral load and anti-SARS-CoV-2 antibodies in patients with positive RT-PCR results after recovery from COVID-19[J]. Korean J Intern Med, 2021, 36(1): 11-14. [本文引用:1]
[24] ZHOU W, XU X M, CHANG Z G, et al. The dynamic changes of serum IgM and IgG against SARS-CoV-2 in patients with COVID-19[J]. J Med Virol, 2021, 93(2): 924-933. [本文引用:1]
[25] SHROTRI M, VAN SCHALKWYK M C I, POST N, et al. T cell response to SARS-CoV-2 infection in humans: a systematic review[J]. PLoS One, 2021, 16(1): e0245532. [本文引用:1]
[26] CROMER D, JUNO J A, KHOURY D, et al. Prospects for durable immune control of SARS-CoV-2 and prevention of reinfection[J]. Nat Rev Immunol, 2021, 21(6): 395-404. [本文引用:1]
[27] GOBBI F, BUONFRATE D, MORO L, et al. Antibody response to the BNT162b2 mRNA COVID-19 vaccine in subjects with prior SARS-CoV-2 infection[J]. Viruses, 2021, 13(3): 422. [本文引用:1]
[28] BILLY J, QUILTY, MSC, et al. Quarantine and testing strategies in contact tracing for SARS-CoV-2: a modelling study[J]. Lancet Public Health, 2021, 6(3): e175-e183. [本文引用:1]
[29] SPENCER K D, CHUNG C L, STARGEL A, et al. COVID-19 case investigation and contact tracing efforts from health departments - United States, June 25-July 24, 2020[J]. MMWR Morb Mortal Wkly Rep, 2021, 70(3): 83-87. [本文引用:1]
[30] STREILEIN W, FINKLEA L, SCHULDT D, et al. Evaluating COVID-19 exposure notification effectiveness with SimAEN: a simulation tool designed for public health decision making[J]. Public Health Rep, 2022, 137(2_suppl): 83S-89S. [本文引用:1]
[31] BIBI Y, RUHOMALLY. Assessing the impact of contact tracing, quarantine and red zone on the dynamical evolution of the covid-19 and emic using the cellular automata approach and the resulting mean field system: a case study in Mauritius[J]. Appl Math Model, 2022, 111: 567-589. [本文引用:1]
[32] CHENG Z J, ZHAN Z Q, XUE M S, et al. Public health measures and the control of COVID-19 in China[J]. Clin Rev Allergy Immunol, 2023, 64(1): 1-16. [本文引用:1]
[33] 吴双胜, 潘阳, 孙瑛, . 新型冠状病毒肺炎病例呼吸道病毒载量与密切接触者续发风险的关系[J]. 中华流行病学杂志, 2021, 42(6): 1008-1011.
WU S S, PAN Y, SUN Y, et al. Relationship between respiratory viral load of cases of COVID-19 and secondary attack risk in close contacts[J]. Chin J Epidemiol, 2021, 42(6): 1008-1011. (in Chinese) [本文引用:1]