细胞色素P450介导蚊虫代谢抗性及防治应用的相关研究进展
彭荟, 刘宏美*
山东省寄生虫病防治研究所,山东第一医科大学(山东省医学科学院),山东 济宁 272033
*通信作者:刘宏美,E-mail: liuhmm163@163.com

作者简介:彭荟(1998—),女,在读硕士,研究方向:媒介蚊虫的抗药性机制研究。

摘要

随着化学杀虫剂在公共卫生和农业上的长期大量应用,导致蚊虫抗药性的发生与发展,从而为病媒疾病的控制带来了前所未有的挑战。目前研究表明代谢抗性是蚊虫抗性中主要的抗性机制之一,其中细胞色素P450作为代谢抗性相关酶类中重要的酶系家族,参与了蚊虫内源及外源化合物的生物转化和代谢。细胞色素P450介导蚊虫代谢抗药性的酶系主要是CYP6、CYP9和CYP4家族。近年来随着生物信息学和分子生物学技术的发展,蚊虫全基因组水平抗性基因及抗性机制取得更全面和深入的研究,越来越多的CYP被发现和证实与蚊虫的抗药性相关,并且应用于相关病媒控制及抗性管理中。本综述介绍了CYPs在蚊虫代谢抗性方面的基础研究情况,以及在蚊虫防治及蚊虫抗性管理中的相关研究进展。

关键词: 细胞色素P450; 蚊虫; 代谢抗性
中图分类号:R384.1 文献标志码:A 文章编号:1009-9727(2022)01-79-05
Development of cytochrome P450 in mediating metabolic resistance and applications for mosquito control
PENG Hui, LIU Hong-mei
Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China
Corresponding author: LIU Hong-mei, E-mail: liuhmm163@163.com
Abstract

With the long-term and large-scale application of chemical insecticides in public health and agricultural sectors, the occurrence and development of mosquito resistance has led to unprecedented challenges for the control of vector diseases. At present, studies have shown that metabolic resistance is one of the main resistance mechanisms of mosquito resistance.Cytochrome P450, as an important family of enzymes related to metabolic resistance, participates in the biotransformation and metabolism of endogenous and exogenous compounds in mosquitoes. CYP6, CYP9 and CYP4 families are the main enzymes of cytochrome P450 mediated mosquito metabolic resistance. In recent years, with the development of bioinformatics and molecular biology technology, more comprehensive and in-depth studies have been made on mosquito genome-wide resistance genes and resistance mechanisms. More and more CYPs have been found and confirmed to be related to mosquito drug resistance and applied to related vector control and resistance management. This paper briefly introduces the basic research of CYPs in mosquito metabolic resistance, as well as the related research progress in mosquito control and mosquito resistance management.

Keyword: Cytochrome P450; mosquitoes; metabolic resistance

蚊媒疾病是一类由病媒蚊虫传播的自然疫源性疾病, 常见的有疟疾、登革热、黄热病等。全球有超过30亿人面临着感染虫媒疾病的风险, 严重威胁着人类的生命健康[1, 2]。控制蚊群的种群数量是预防和控制虫媒疾病传播的重要途径。自20世纪40年代以来, 应用化学杀虫剂控制蚊虫的数量取得了丰硕的成果[3], 然而由于杀虫剂的连续大量使用, 导致了蚊虫抗药性的发生与发展[4, 5], 蚊虫种群对广泛使用的数种杀虫剂表现出较强的抗药性水平, 为蚊虫防制带来了巨大的挑战[6]

基于全基因组高通量测序、RNA干扰(RNA interference, RNAi)等生物信息学和分子生物学技术的发展, 蚊虫全基因组水平抗性基因和抗性机制的相关研究取得了突破性的进展, 极大地促进了对蚊虫抗药性的研究。目前得到广泛认可的抗药性机制主要有靶标抗性[7, 8]、代谢抗性、表皮抗性和行为抗性[9, 10]。其中代谢抗性是由于参与杀虫剂代谢、隔离和排泄过程的酶过表达或构象改变, 导致其活性升高, 从而对杀虫剂解毒作用增强[11, 12, 13]。蚊虫代谢抗性主要涉及3大类解毒酶, 即细胞色素P450 氧 化 酶(cytochrome P450, P450)、羧 酸 酯 酶(carboxylesterase, COE) 和 谷 胱 甘 肽-S-转 移 酶(glutathione S-transferase, GST)[14], 其中细胞色素P450s是与大多数杀虫剂相关的最主要的酶系家族[3]

细胞色素P450s是昆虫体内参与许多内源及外源性化合物的生物转化的一类氧化酶, 是一个非常复杂的酶系, 其调控通常是生物体内与体外多种因素共同作用的结果, 目前的研究表明其分子机制主要通过点突变及过转录导致酶表达量增加与酶活性的增强, 从而导致蚊虫具有抗药性[15]。P450s由多个基因家族组成, 每个基因家族又包括许多个亚家族。迄今为止在昆虫体内已发现了约660余种P450s, 分布在CYP6、CYP9、CYP4、CYP12、CYP15A等家族和亚家族中。其中关于蚊虫抗药性的研究主要集中在CYP6、CYP9和CYP4家族[16, 17, 18]。本综述阐述了CYP6、CYP9和CYP4三个家族中的得到广泛研究的CYP基因在蚊虫抗药性产生和作用机制以及CYPs在蚊虫防控应用中的研究进展。

1 CYPs与抗药性之间的关系
1.1 CYP6P3

研究人员对高抗性野生冈比亚按蚊(Anopheles gambiae)高通量测序后发现其参与代谢抗性的基因CYP6P3显著过表达, 其过表达可能在氨基甲酸酯抗性中发挥作用[8]。Adolfi等[19]使用GAL4/UAS系统分析冈比亚按蚊中过表达的CYP6P3基因发现, CYP6P3介导拟除虫菊酯抗性的同时增加对马拉硫磷的敏感性, 这表明该基因或许能在按蚊中引起负交互抗性。目前的研究已经证明许多地区蚊种中的CYP6P3的表达水平升高均与杀虫剂抗药性有一定的相关性[20, 21, 22], 但这些基因的结构变异对抗药性的影响以及相关的机制的研究仍然有待进一步发掘。

1.2 CYP6P9

Riveron等[23]通过基因芯片和定量RT-PCR的全基因组转录分析一致显示, 疟疾病媒按蚊(Anopheles funestus)的P450基因CYP6P9a和CYP6P9b均显著高表达, 将CYP6P9a和CYP6P9b基因在黑腹果蝇(Drosophila melanogaster)中进行转基因表达, 表明这两种基因都有I型(氯菊酯)和Ⅱ 型(溴氰菊酯)拟除虫菊酯抗性。重组CYP6P9b蛋白再一次证实该蛋白能代谢I型(氯菊酯和联苯菊酯)和Ⅱ 型(溴氰菊酯和高效氯氟氰菊酯)拟除虫菊酯, 但不代谢滴滴涕(DDT)。另发现非洲抗性疟疾媒蚊的CYP6P9a和CYP6P9b等位基因的表达也可使其对除虫菊酯、氯菊酯和溴氰菊酯产生抗药性, 其中CYP6P9b抗性等性突变[24, 25]。说明基因CYP6P9a和CYP6P9b过表达与等位基因突变这两种机制可能共同介导了抗药性的发生。

1.3 CYP6M2

Stevenson等[26]发现CYP6M2在氯菊酯抗性的冈比亚按蚊野外品系中过度表达, 并通过构建大肠杆菌表达载体证明其表达的蛋白质能代谢氯菊酯和溴氰菊脂类杀虫剂。与大多数的P450一样, CYP6M2也存在交互抗性。冈比亚拟南芥野外品系中CYP6M2在中肠和胚胎细胞中特异性过表达, 增加了其对拟除虫菊酯抗性的同时又增加了残杀威的敏感性, 即CYP6M2存在负交互抗性的情况[3, 27]。CYP6M2代谢拟除虫菊酯的功能得到广泛研究, 同时另有学者[28]通过微卫星扫描基因组发现CYP6M2基因位于与氯菊酯抗性相关位点的两侧, 这一发现再次说明了该基因突变对氯菊酯抗性的重要性。若能进一步详细对该区域进行定位, 将有助于阐明其对杀虫剂代谢抗性的分子机制。

1.4 CYP9M10

Hardstone[29]以沙特阿拉伯致倦库蚊(Culex fatigans)氯氰菊酯的敏感(SLAB)和2种抗性品系基因品系(ISOP450和ISOJPAL)为研究对象, 发现CYP9M10在抗性品系均显著性上调(ISOP450为1 800倍, ISOJPAL为870倍), 即CYP9M10基因与致倦库蚊对氯菊酯的抗性有关。Gong等[27]利用昆虫杆状病毒表达系统, 将CYP9M10与细胞色素P450还原酶(CPR)共表达于昆虫草蚜(Spodoptera frugiperda, Sf9)细胞中, 研究CYP9M10/CPR对氯菊酯及其代谢产物的酶活性和代谢能力, 结果表明CYP9M10在氯菊酯及其代谢物PBOH和PBCHO的解毒中发挥重要作用, 其最终代谢产物为PBCOOH。Itokaw等[30]通过多CYP9M10基因的基因组研究发现其过表达是由顺式作用元件突变引起的。

1.5 CYP4

CYP4家族在细胞色素P450s基因中的数量众多, 已有多个基因被证实与菊酯抗性有关。Mü ller等[31]研究报道冈比亚按蚊氯菊酯筛选群与初始群比较, CYP4H19和CYP4H24为过表达(< 2 倍)。并且在蚊虫不同发育阶段的表达量有一定的差异。有研究报道了溴氰菊酯抗性品系淡色库蚊CYP4H21、CYP4H22、CYP4H23、CYP4J4和CYP4J6过表达[11]。Komagata等[32]报道研究中菊酯抗性致倦库蚊有多个P450s抗性基因, 如CYP4D40、CYP4H34(8.3倍), 同时过表达基因还有CYP9M10(264倍)、CYP6Z10(3.9倍)和 CYP6M12。

2 CYPs研究在改善病媒控制中的应用
2.1 CYPs在蚊虫抗性诊断及其抗性管理中的应用

通过检测白蝇中解毒酶BtCYP6CM1的蛋白水平, 诊断白蝇对新烟碱类杀虫剂抗药性的免疫条带试剂盒研发成功, 为蚊虫的防治带来启发[32, 33]。有一种实用的快速一步多重TaqMan基因表达检测法, 可直接对保存在酰基苯胺(RNAlater)的蚊虫破碎裂解物进行检测, 监测可能的代谢抗性关键CYPs基因[34]。最近有研究者设计了一种基于DNA的诊断工具来检测和跟踪漏斗按蚊中CYPs的拟除虫菊酯抗药性[18]。虽然蚊虫的CYPs的代谢抗性机制十分复杂。其通常由多个CYPs共同介导[35], 并且基因表达水平及等位基因变异与抗性之间的联系还不太清楚等[36]。但相信随着研究者们前赴后继的探索, CYPs方面的基础研究将会有更多的应用于蚊虫抗性诊断及IRM中。

2.2 筛选杀虫剂和增效剂的代谢倾向和抗性潜力

蚊类CYPs重组文库已建立, 可用于检测蚊虫对新型杀虫剂及增效剂的代谢倾向性, 从而预测杀虫剂对过表达某些CYPs的抗性蚊虫的功效。同时可通过高通量吸光度、荧光和化学发光法等技术来评估增效剂的抑制潜力, 以确定与CYPs相互作用的杀虫剂及增效剂对蚊虫抗药性的影响[37]。该方法能用于抑制抗药性的改良杀虫剂配方的研发。如最近在非洲成功验证的胡椒酰丁醇(PBO)拟除虫菊酯组合蚊帐, 该蚊帐不仅能增加蚊虫的死亡率还能降低蚊虫吸血率, 在一定程度上降低了疟疾的流行率[38]。此外, 已有研究者开发出过表达CYPs并结合靶点抗性突变的转基因果蝇超抗性品系, 可作为高通量的体内工具用于新型杀虫剂的筛选[39]。并结合接触、成虫或幼虫喂养、显微注射等多种生物测定方法评估各种杀虫剂活性成分的急性和慢性毒力效应[40]。同时还有一种过表达了3个最常见的与抗药性相关的CYP基因(Cyp6m2、Cyp6p3和Gste2)的转基因冈比亚按蚊, 其对杀虫剂的抗药性仅有代谢抗性, 这种转基因按蚊可能会成为针对现有蚊虫抗性机制预筛选新型杀虫剂的一种宝贵工具[6]

2.3 CYPs负交叉抗性可能作为抗性管理的新工具

研究发现抗性蚊虫中过量的CYPs代谢一种杀虫剂(如拟除虫菊酯)的同时, 也可能降低其对另一种杀虫剂(如有机磷、酮烯醇或氯虫腈)的抗药性, 即不同类杀虫剂之间存在一定程度负交叉抗性[3]。这可能也为IRM指明了新的方向。研究者[41, 42]发现冈比亚按蚊中CYP6M2基因的过表达在增加了对马拉硫磷的敏感性的同时, 降低了对氯菊酯的敏感性, 这种现象可以解释为马拉硫磷对其毒性更强的代谢物马拉磷的生物激活, 尽管相对激活与解毒的关系仍然不清楚。但该研究提示我们在未来使用化学杀虫剂的过程中需要仔细考虑多种化合物的CYP代谢的两面性, 同时两种杀虫剂联合使用或可增加蚊虫的适合度代价, 从而抑制蚊虫抗性的发展。因此CYPs负交互抗性的特点理论上可应用于蚊虫抗药性的管理和新研发杀虫剂的化学反应的预测, 但这一猜想的实用性还需要大量的实验数据进行证明。

3 结语

蚊虫的危害是我们目前面临的一个严重问题, 关于蚊虫数量的控制主要还是依赖于化学杀虫剂, 但目前的研究表明蚊虫抗药性的形势严峻, 其中细胞色素P450s酶介导的抗药性尤为重要, 近年来虽然在蚊虫抗药性分析和鉴定与该性状相关的一些CYP方面取得了重大进展, 但主要是细胞色素P450s与蚊虫抗药性的相关性研究, 而CYP在杀虫剂抗药性中的确切分子和生理作用还没有完全阐明, 以及关于单CYP在耐药性中的实际作用和以CYP标记物为靶点的分子诊断的真正价值等实际问题还没有得到解决。目前基于生物技术的发展, 已经构建了重组蚊类的CYPs文库, 可用于检测新型杀虫剂先导物的代谢倾向, 预测其对过表达解毒CYPs的抗药性蚊群的有效性, 但该方法的实际实施还需要进行进一步验证。未来的研究应重点关注CYPs介导蚊虫抗药性机制、结构与功能的研究以及其研究结果的实际应用, 为防治抗药性蚊虫提供更多的理论基础。

利益冲突声明 所有作者声明不存在利益冲突

编辑:王佳燕

参考文献
[1] STRODE C, DONEGAN S, GARNER P, et al. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis[J]. PLoS Med, 2014, 11(3): e1001619. [本文引用:1]
[2] BHATT S, GETHING P W, BRADY O J, et al. The global distribution and burden of dengue[J]. Nature, 2013, 496(7446): 504-507. [本文引用:1]
[3] LI Y S, TANG J X, ZHU G D. Research progress on the metabolic resistance of mosquitoes to insecticides[J]. China Trop Med, 2021, 21(4): 375-379. (in Chinese)
李雅姝, 唐建霞, 朱国鼎. 蚊虫杀虫剂代谢抗性研究进展[J]. 中国热带医学, 2021, 21(4): 375-379. [本文引用:4]
[4] WANG Y H, ZHENG A H, LIU Q Y, et al. Advances in research on vector insects[J]. Chin J Appl Entomol, 2017, 54(3): 364-371. (in Chinese)
王燕红, 郑爱华, 刘起勇, . 虫媒疾病传播媒介的研究进展[J]. 应用昆虫学报, 2017, 54(3): 364-371. [本文引用:1]
[5] MARCOMBE S, DARRIET F, TOLOSA M, et al. Pyrethroid resistance reduces the efficacy of space sprays for dengue control on the island of Martinique (Caribbean)[J]. PLoS Negl Trop Dis, 2011, 5(6): e1202. [本文引用:1]
[6] ZHU F, LAVINE L, O'NEAL S, et al. Insecticide resistance and management strategies in Urban Ecosystems[J]. Insects, 2016, 7(1): 2. [本文引用:2]
[7] HEMINGWAY J, HAWKES N J, MCCARROLL L, et al. The molecular basis of insecticide resistance in mosquitoes[J]. Insect Biochem Mol Biol, 2004, 34(7): 653-665. [本文引用:1]
[8] STICA C, JEFFRIES C L, IRISH S R, et al. Characterizing the molecular and metabolic mechanisms of insecticide resistance in Anopheles gambiae in Faranah, Guinea[J]. Malar J, 2019, 18(1): 244. [本文引用:2]
[9] MOYES C L, VONTAS J, MARTINS A J, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans[J]. PLoS Negl Trop Dis, 2017, 11(7): e0005625. [本文引用:1]
[10] YANG H N, TAN W B. Research progress on the mechanism of ferritin involved in the formation of mosquito resistance[J]. China Trop Med, 2019, 19(3): 286-290. (in Chinese)
杨会娜, 谭文彬. 转铁蛋白参与蚊虫抗药性形成机制的研究进展[J]. 中国热带医学, 2019, 19(3): 286-290. [本文引用:1]
[11] BELINATO T A, VALLE D. The impact of selection with diflubenzuron, a chitin synthesis inhibitor, on the fitness of two Brazilian Aedes aegypti field populations[J]. PLoS One, 2015, 10(6): e0130719. [本文引用:2]
[12] DAVID J P, FAUCON F, CHANDOR-PROUST A, et al. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing[J]. BMC Genomics, 2014, 15: 174. [本文引用:1]
[13] DAVID J P, ISMAIL H M, CHANDOR-PROUST A, et al. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth[J]. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1612): 20120429. [本文引用:1]
[14] TOMITA T, SCOTT J G. cDNA and deduced protein sequence of CYP6D1: the putative gene for a cytochrome P450 responsible for pyrethroid resistance in house fly[J]. Insect Biochem Mol Biol, 1995, 25(2): 275-283. [本文引用:1]
[15] JOHNSON R M, WEN Z, SCHULER M A, et al. Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases[J]. J Econ Entomol, 2006, 99(4): 1046-1050. [本文引用:1]
[16] PITTENDRIGH B, ARONSTEIN K, ZINKOVSKY E, et al. Cytochrome P450 genes from Helicoverpa armigera: expression in a pyrethroid-susceptible and -resistant strain[J]. Insect Biochem Mol Biol, 1997, 27(6): 507-512. [本文引用:1]
[17] PAN J, YANG C, LIU Y, et al. Novel cytochrome P450 (CYP6D1) and voltage sensitive sodium channel (Vssc) alleles of the house fly ( Musca domestica) and their roles in pyrethroid resistance[J]. Pest Manag Sci, 2018, 74(4): 978-986. [本文引用:1]
[18] ISHAK I H, KAMGANG B, IBRAHIM S S, et al. Pyrethroid resistance in Malaysian populations of dengue vector Aedes aegyptiis mediated by CYP9 family of cytochrome P450 genes[J]. PLoS Neglected Trop Dis, 2017, 11(1): e0005302. [本文引用:2]
[19] ADOLFI A, POULTON B, ANTHOUSI A, et al. Functional genetic validation of key genes conferring insecticide resistance in the major African malaria vector, Anopheles gambiae[J]. PNAS, 2019, 116(51): 25764-25772. [本文引用:1]
[20] 雷震涛. 蚊miR-278-3p与抗药性关系的研究[D]. 南京: 南京医科大学, 2015. [本文引用:1]
[21] OUMBOUKE W A, PIGNATELLI P, BARREAUX A M G, et al. Fine scale spatial investigation of multiple insecticide resistance and underlying target-site and metabolic mechanisms in Anopheles gambiae in central Côte d'Ivoire[J]. Sci Rep, 2020, 10(1): 15066. [本文引用:1]
[22] IBRAHIM S S, RIVERON J M, BIBBY J, et al. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector[J]. PLoS Genet, 2015, 11(10): e1005618. [本文引用:1]
[23] RIVERON J M, IRVING H, NDULA M, et al. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus[J]. PNAS, 2013, 110(1): 252-257. [本文引用:1]
[24] MUGENZI L M J, MENZE B D, TCHOUAKUI M, et al. Cis-regulatory CYP6P9b P450 variants associated with loss of insecticide-treated bed net efficacy against Anopheles funestus[J]. Nat Commun, 2019, 10(1): 4652. [本文引用:1]
[25] ZOU F, GUO Q, SHEN B, et al. A cluster of CYP6 gene family associated with the major quantitative trait locus is responsible for the pyrethroid resistance in Culex pipiens pallen[J]. Insect Mol Biol, 2019, 28(4): 528-536. [本文引用:1]
[26] STEVENSON B J, BIBBY J, PIGNATELLI P, et al. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: Sequential metabolism of deltamethrin revealed[J]. Insect Biochem Mol Biol, 2011, 41(7): 492-502. [本文引用:1]
[27] GONG Y, LI T, FENG Y, et al. The function of two P450s, CYP9M10 and CYP6AA7, in the permethrin resistance of Culex quinquefasciatus[J]. Sci Rep, 2017, 7(1): 587. [本文引用:2]
[28] KASAI S, KOMAGATA O, ITOKAWA K, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism[J]. PLoS Negl Trop Dis, 2014, 8(6): e2948. [本文引用:1]
[29] HARDSTONE M C, KOMAGATA O, KASAI S, et al. Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus[J]. Insect Mol Biol, 2010, 19(6): 717-726. [本文引用:1]
[30] ITOKAWA K, KOMAGATA O, KASAI S, et al. Genomic structures of Cyp9m10 in pyrethroid resistant and susceptible strains of Culex quinquefasciatus[J]. Insect Biochem Mol Biol, 2010, 40(9): 631-640. [本文引用:1]
[31] MÜLLER P, WARR E, STEVENSON B J, et al. Field -Caught permethrin-resistant, Anopheles gambiae, overexpress CYP6P3, a P450 that metabolises pyrethroids[J]. Plos Genetics, 2008, 4(11): 1000286. [本文引用:1]
[32] KOMAGATA O, KASAI S, TOMITA T. Overexpression of cytochrome p450 genes in pyrethroid -resistant Culex quin quefasciatus[J]. Insect Biochem Mol Biol, 2010, 40(2): 146-52 [本文引用:2]
[33] LUCAS E R, MILES A, HARDING N J, et al. Whole genome sequencing reveals high complexity of copy number variation at insecticide resistance loci in malaria mosquitoes[J]. Genome Res, 2019, 29(8): 1250-1261. [本文引用:1]
[34] STICA C, JEFFRIES C L, IRISH S R, et al. Characterizing the molecular and metabolic mechanisms of insecticide resistance in Anopheles gambiae in Faranah, Guinea[J]. Malar J, 2019, 18(1): 244. [本文引用:1]
[35] YAHOUÉDO G A, CHANDRE F, ROSSIGNOL M, et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae[J]. Sci Rep, 2017, 7(1): 11091. [本文引用:1]
[36] FAUCON F, DUSFOUR I, GAUDE T, et al. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegyptiby deep targeted sequencing[J]. Genome Res, 2015, 25(9): 1347-1359. [本文引用:1]
[37] SMITH L B, SEARS C, SUN H, et al. CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in Aedes aegyptiin the presence and absence of kdr[J]. Pestic Biochem Physiol, 2019, 160: 119-126. [本文引用:1]
[38] SAMANTSIDIS G R, PANTELERI R, DENECKE S, et al. 'What I cannot create, I do not understand ': functionally validated synergism of metabolic and target site insecticide resistance[J]. Proc Biol Sci, 2020, 287(1927): 20200838. [本文引用:1]
[39] MAVRIDIS K, WIPF N, MEDVES S, et al. Rapid multiplex gene expression assays for monitoring metabolic resistance in the major malaria vector Anopheles gambiae[J]. Parasit Vectors, 2019, 12(1): 9. [本文引用:1]
[40] YUNTA C, HEMMINGS K, STEVENSON B, et al. Cross-resistance profiles of malaria mosquito P450s associated with pyrethroid resistance against WHO insecticides[J]. Pestic Biochem Physiol, 2019, 161: 61-67. [本文引用:1]
[41] GLEAVE K, LISSENDEN N, RICHARDSON M, et al. Piperonyl butoxide (PBO) combined with pyrethroids in insecticide-treated nets to prevent malaria in Africa[J]. Cochrane Database Syst Rev, 2018, 11: CD012776. [本文引用:1]
[42] IBRAHIM S S, AMVONGO-ADJIA N, WONDJI M J, et al. Pyrethroid resistance in the major malaria vector anopheles funestus is exacerbated by overexpression and overactivity of the P450 CYP6AA1 across Africa[J]. Genes, 2018, 9(3): 140. [本文引用:1]