人类健康所面临的持久挑战:新发和再现人兽共患病
汪伟1, 夏菡2,*, 李健3,*
1.江苏省血吸虫病防治研究所,江苏 无锡 214064
2.中国科学院武汉病毒研究所,湖北 武汉 430071
3.湖北医药学院基础医学院,湖北 十堰 44200
*通信作者:夏菡,E-mail: hanxia@wh.iov.cn;李健,E-mail: yxlijian@163.com

作者简介:汪伟(1982—),男,硕士,副研究员,研究方向:人兽共患病流行病学。

摘要

人兽共患病是一类可以从动物向人类传播的传染性疾病,目前已知200多种人兽共患病;1 400种人类传染病病原中,约61%具有动物源性,其中75%人类新发传染病为人兽共患病。这些人兽共患病不仅对人类健康造成巨大威胁,而且极大影响动物健康、阻碍畜牧业良性发展。为有效应对人兽共患病带来的持续挑战,WHO与各国政府、学术团队、非政府及慈善机构、区域性和国际合作伙伴携手合作,以预防和管控人兽共患病的威胁及其造成的公共卫生、社会和经济影响。虽然我国人兽共患病防控工作已取得显著进展,但由于环境、气候、社会经济、抗菌药物耐药性等多种因素的影响,消除人兽共患病的危害仍面临诸多挑战。基于全健康理念,通过多学科、多部门合作,综合运用现代生物、信息、人工智能、大数据平台等技术手段,将有助于人兽共患病防控和消除。

关键词: 人兽共患病; 新发传染病; 再现传染病; 人类健康; 全健康
中图分类号:R535 文献标志码:A 文章编号:1009-9727(2022)10-895-04
Emerging and re-emerging zoonoses is a persistent challenges for human health
WANG Wei1, XIA Han2, LI Jian3
1. Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
2. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
3. School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 44200, China
Corresponding author: XIA Han, E-mail: hanxia@wh.iov.cn; LI Jian, E-mail: yxlijian@163.com
Abstract

Zoonoses are a class of infectious diseases that are transmitted from animals to humans. More than 200 known types of zoonoses have been reported across the world until now. Among 1 400 pathogens of human infectious diseases, approximately 61% are zoonotic origin, and 75% human emerging infectious diseases are zoonoses. These zoonoses pose a great threat to human and animal health and decrease livestock production. To effectively tackle the persistent challenges resulting from zoonoses, WHO collaborates with member governments, academia, non-governmental and charitable organizations, and regional and international partners to prevent and manage zoonotic threats and their public health, social and economic impacts. Although great success has been achieved in the management of zoonoses, there are still multiple challenges for zoonoses control in China due to environmental, climate, socioeconomic factors and antimicrobial resistance. Based on the One Health concept, the integration of modern biological, information, artificial intelligent and big data tools through multidisciplinary and multi-sectorial collaborations may facilitate the containment and elimination of zoonoses.

Keyword: Zoonoses; emerging infectious disease; re-emerging infectious disease; human health; One Health

新型冠状病毒肺炎(COVID-19)全球大流行让人兽共患病(zoonoses)这个专业术语家喻户晓[1]。Zoonoses来源自希腊文Zoon(动物)和nosos(疾病)[2], 世界卫生组织(WHO)将人兽共患病定义为一类可以从动物向人类传播的传染性疾病[3]。目前已知有200多种人兽共患病, 根据病原学特征可分为病毒学、细菌性、真菌性、寄生虫性、立克次氏体性、支原体性等多个种类[4]。流行病学数据显示, 全球约3/4的农村贫困人口、1/3的城市贫困居民直接依赖家畜获取食物、收入、肥料等而维持生计; 1 400种人类传染病病原中, 约61%具有动物源性, 其中75%人类新发传染病为人兽共患病; 全球24亿人患有13种最常见的人兽共患病, 每年导致270万人死亡[5]。人兽共患病不仅对人类健康造成了巨大威胁, 而且极大影响动物健康、降低畜牧业产量[6, 7]

1 现状

自2000年以来, 严重急性呼吸综合征(SARS)、禽流感、甲型H1N1流感、炭疽、埃博拉病毒病、寨卡病毒病、中东呼吸综合征(MERS)、COVID-19、鹦鹉热、猴痘等新发和再现人兽共患病层出不穷, 造成了大量人口死亡和社会经济损失, 给人类社会发展造成了巨大创伤[8, 9, 10, 11, 12, 13, 14, 15]。截至2022年9月30日, 全球累计有超过6亿例COVID-19确诊病例, 其中死亡病例650余万, 变异毒株的不断出现给仍在全球流行的COVID-19疫情防控造成了巨大挑战[16]。猴痘已在1980年消除, 但自2022年1月1日起, WHO全部6个区域的106个成员国家和地区陆续报告了猴痘病例; 7月23日, WHO宣布猴痘疫情为“ 国际关注的突发公共卫生事件(public health emergency of international concern)”; 截至2022年9月30日, 全球已有67 556例猴痘确诊病例, 其中死亡病例27例[17]。COVID-19全球大流行对疾病流行国家卫生健康系统造成了严重破坏, 对其他人兽共患疾病消除和防控工作也造成了不同程度负面影响[18, 19, 20, 21, 22, 23]。因此, 新发和再现人兽共患病是人类健康的持久挑战。

2 应对

为有效应对人兽共患病带来的持续挑战, WHO与各国政府、学术团队、非政府及慈善机构、区域性和国际合作伙伴携手合作, 以预防和管控人兽共患病的威胁及其造成的公共卫生、社会和经济影响。2006年, WHO、联合国粮食与农业组织(FAO)及世界动物卫生组织(WOAH)建立了“ 全球包括人兽共患病在内的重大动物疾病早期预警系统(global early warning system for major animal diseases including zoonosis, GLEWS)”, 旨在通过在人-动物-生态系统界面对健康威胁和潜在关注事件进行快速检测和风险评估以形成防控措施。2010年, FAO、OIE和WHO发布三方合作协议《在人-动物-生态系统界面共担责任、协调全球行动》(sharing responsibilities and coordinating global activities to address health risks at the animal-human-ecosystems interfaces)”, 为全球包括人兽共患病在内的重大动物疾病防控提供了框架指南。2012年, WHO发布《人兽共患病与被边缘化的感染性疾病优先研究领域技术报告》(research priorities for zoonoses and marginalized infections), 该报告对影响贫困人口的人兽共患病与被边缘化的感染性疾病的研究景观进行了系统分析, 并列出了支持疾病控制的优先研究领域[24]。2022年9月, 我国农业农村部制定并下发了《全国畜间人兽共患病防治规划(2022—2030年)》。这些组织建设和文件规划为推动我国人兽共患病防控提供了便利条件。

3 挑战

然而目前我国人兽共患病防控工作仍然面临诸多挑战:(1)洪水、地震等自然灾害、湿地建设、新时期环境保护背景下对灭螺工作的新要求可导致日本血吸虫病传病媒介湖北钉螺环境新发和复现, 增加血吸虫病传播风险、影响消除血吸虫病进程[25, 26, 27, 28, 29, 30]; 局部生境破碎化也容易诱发鼠疫等急性传染病暴发流行[31]。(2)气候变化可能导致传病媒介现有空间分布发生改变[32, 33], 导致血吸虫病、广州管圆线虫病和疟疾、登革热等蚊媒疾病流行范围扩展。(3)全球经济、文化、人员交流的愈加频繁, 增加了生物入侵的机会和风险, 同时也增加了人兽共患病出现的可能性[34]。(4)抗菌药物耐药性涉及动物、人群、植物、土壤、水域等, 是一种全球性重大公共卫生问题。因抗菌药物滥用导致不断扩散的抗菌药物耐药性对人兽共患病防控造成了严峻挑战[35, 36]。如果不采取积极的应对措施或所实施的措施不力, 人类可能会面临“ 今天不行动, 明天真的无药可救” 的窘境。

4 建议

面对人兽共患病的持续挑战, 建议采取以下措施:(1)采取全健康(One Health)理念推进人兽共患病防控工作[37, 38]。全健康理念提倡在地方性、区域性和全球性层面上开展跨学科、跨部门、跨领域合作, 通过“ 天人合一” 的系统思维方式、“ 整齐划一” 的实践指导方法、“ 一本万利” 的经济评价策略, 探索人、动物和生态系统间的复杂交错关系, 从整体和系统的视角提出人兽共患病防控策略[39]。(2)采取高通量测序技术、环境DNA技术、核酸检测技术等现代生物技术用于人兽共患病检测、监测、预警和风险评估, 助力人兽共患病防控[40, 41, 42, 43]。(3)基于敏感高效的检测技术和现代信息化技术、人工智能、机器学习方法[44], 建立敏感高效的人兽共患病监测预警响应体系[45], 提升疾病预测预警能力和应急处置能力, 将人兽共患病危害降到最低。

5 结语

人兽共患病关乎公共卫生安全、畜牧业生产安全和国家生物安全。人兽共患病防控工作重在预防, 普及人兽共患病防治知识、提升居民健康素养, 亦可有效降低居民患病风险。基于全健康理念, 通过多学科、多部门合作, 叠加生物技术、信息技术、智能技术、大数据技术等多学科技术手段, 将有助于人兽共患病防控。

利益冲突声明 所有作者声明不存在利益冲突

编辑:黄艳

参考文献
[1] WANG T T, ZHOU X J, TANG Q, et al. The comparative analysis of epidemiological characteristics between COVID-19 and SARS[J]. China Trop Med, 2020, 20(11): 1108-1111. (in Chinese)
王彤彤, 周学健, 唐琴, . 新型冠状病毒肺炎与传染性非典型肺炎的流行病学特征分析[J]. 中国热带医学, 2020, 20(11): 1108-1111. [本文引用:1]
[2] SHAPIRO J T, VÍQUEZ-R L, LEOPARDI S, et al. Setting the terms for zoonotic diseases: effective communication for research, conservation, and public policy[J]. Viruses, 2021, 13(7): 1356. [本文引用:1]
[3] ZHU Z Y, HUANG G C, LUO J, et al. Summary of prevention and control of zoonoses[J]. China Trop Med, 2008, 8(4): 700-702. (in Chinese)
朱展鹰, 黄国超, 骆杰, . 人兽共患病预防控制概述[J]. 中国热带医学, 2008, 8(4): 700-702. [本文引用:1]
[4] DONG X P, SOONG L. Emerging and re-emerging zoonoses are major and global challenges for public health[J]. Zoonoses, 2021: 1-2. [本文引用:1]
[5] Grace D, Mutua F, Ochungo P, et al. Mapping of poverty and likely zoonoses hotspots[R]. Nairobi: Kenya, 2012, 57-99. https://assets.publishing.service.gov.uk/media/57a08a67e5274a27b200059f/61303_zels-P4-dfid-zoonoses-report-4.pdf. [本文引用:1]
[6] RAHMAN M T, SOBUR M A, ISLAM M S, et al. Zoonotic diseases: etiology, impact, and control[J]. Microorganisms, 2020, 8(9): 1405. [本文引用:1]
[7] KARESH W B, DOBSON A, LLOYD-SMITH J O, et al. Ecology of zoonoses: natural and unnatural histories[J]. Lancet, 2012, 380(9857): 1936-1945. [本文引用:1]
[8] ZHU W, SHA X P. Atypical monkeypox and sexually transmitted disease?[J/OL]. China Trop Med: 1-6[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220802.1120.002.html.
朱威, 沙新平. 非典型猴痘是否为性传播疾病?[J/OL]. 中国热带医学: 1-6[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220802.1120.002.html. [本文引用:1]
[9] VUE D, TANG Q Y. Zika virus overview: transmission, origin, pathogenesis, animal model and diagnosis[J]. Zoonoses, 2021, 1(1): 14-27. [本文引用:1]
[10] LIU X N, JIANG X, ZHU Z, et al. The novel monkeypox outbreak: what should we know and reflect on?[J]. Zoonoses, 2022, 2(1): 20-23. [本文引用:1]
[11] DHARMARAJAN G, LI R Y, CHANDA E, et al. The animal origin of major human infectious diseases: what can past epidemics teach us about preventing the next pand emic?[J]. Zoonoses, 2022, 2(1): 11-24. [本文引用:1]
[12] LONG H Y, LI F H, PANG X R, et al. Avian influenza surveillance results of environmental samples of live poultry market in Fangchenggang, Guangxi, 2017[J]. China Trop Med, 2019, 19(6): 581-583. (in Chinese)
龙海艺, 李锋华, 庞秀然, . 广西防城港市2017年活禽市场环境样本禽流感监测[J]. 中国热带医学, 2019, 19(6): 581-583. [本文引用:1]
[13] VELETZKY L, HUEBL L, SCHULZE ZUR WIESCH J, et al. Psittacosis in a traveller[J]. J Travel Med, 2021, 28(6): taab062. [本文引用:1]
[14] WOJTYŁA A. On the verge of the 21st century there tends to be a panic in the struggle against communicable diseases[J]. Ann Agric Environ Med, 2012, 19(2): 163-164. [本文引用:1]
[15] MATHIS M, BRIAND S, PRENTICE T. Emerging and re-emerging infectious threats in the 21st century[J]. Wkly Epidemiol Rec, 2015, 90(20): 238-244. [本文引用:1]
[16] SHI Z W, QIN Z, HUANG J, et al. Progress in prevention and control of Delta coronavirus variant[J]. China Trop Med, 2022, 22(2): 171-176. (in Chinese)
石梓薇, 秦周, 黄娇, . Delta新冠病毒变异毒株的防控与治疗进展[J]. 中国热带医学, 2022, 22(2): 171-176. [本文引用:1]
[17] EJAZ H, JUNAID K, YOUNAS S, et al. Emergence and dissemination of monkeypox, an intimidating global public health problem[J]. J Infect Public Health, 2022, 15(10): 1156-1165. [本文引用:1]
[18] GUO J Y, ZHANG L J, CAO C L, et al. Challenges of schistosomiasis control in China during the coronavirus disease 2019 (COVID-19) epidemic[J]. Chin J Schistosomiasis Control, 2020, 32(5): 511-516, 521. (in Chinese)
郭婧怡, 张利娟, 曹淳力, . 新型冠状病毒肺炎疫情防控期间我国血吸虫病防治工作面临的影响和挑战调查[J]. 中国血吸虫病防治杂志, 2020, 32(5): 511-516, 521. [本文引用:1]
[19] ZHU G D, CAO J. Challenges and countermeasures on Chinese malaria elimination programme during the coronavirus disease 2019 (COVID-19) outbreak[J]. Chin J Schistosomiasis Control, 2020, 32(1): 7-9. (in Chinese)
朱国鼎, 曹俊. 新型冠状病毒肺炎疫情对我国消除疟疾工作的挑战及应对策略[J]. 中国血吸虫病防治杂志, 2020, 32(1): 7-9. [本文引用:1]
[20] VAN WYNGAARD A. A pand emic of inequality: reflections on AIDS and COVID-19 in the southern African context[J]. Afr J AIDS Res, 2022, 21(2): 152-161. [本文引用:1]
[21] KONDILI L A, BUTI M, RIVEIRO-BARCIELA M, et al. Impact of the COVID-19 pand emic on hepatitis B and C elimination: an EASL survey[J]. JHEP Rep, 2022, 4(9): 100531. [本文引用:1]
[22] CAREN G J, ISKANDAR D, PITALOKA D A E, et al. COVID-19 pand emic disruption on the management of tuberculosis treatment in Indonesia[J]. J Multidiscip Healthc, 2022, 15: 175-183. [本文引用:1]
[23] WOLFE N D, DUNAVAN C P, DIAMOND J. Origins of major human infectious diseases[J]. Nature, 2007, 447(7142): 279-283. [本文引用:1]
[24] World Health Organization. Research priorities for zoonoses and marginalized infections[R]. World Health Organ Tech Rep Ser, 2012, 971: ix-119. [本文引用:1]
[25] DAI B, WANG T P, XU X J, et al. Investigation on newly emerging and re-emerging snail habitats in Anhui from 2017 to 2021[J/OL]. China Trop Med: 1-11[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220713.1959.004.html. (in Chinese)
代波, 汪天平, 许晓娟, 等. 安徽省2017—2021年新发现和复现钉螺调查[J/OL]. 中国热带医学: 1-11[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220713.1959.004.html. [本文引用:1]
[26] CHEN Y, ZHANG S Q, GAO L, et al. Influence of flood disaster on snail distribution in Wuhu section of Yangtze River in 2020[J/OL]. China Trop Med: 1-9[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220728.1541.006.html. (in Chinese)
陈勇, 张世清, 高岚, 等. 2020年洪涝灾害对长江芜湖段钉螺分布的影响[J/OL]. 中国热带医学: 1-9[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220728.1541.006.html. [本文引用:1]
[27] ZHANG S Q. Flood disasters and schistosomiasis control[J]. Chin J Schistosomiasis Control, 2020, 32(5): 522-525. (in Chinese)
张世清. 洪涝灾害与血吸虫病防控[J]. 中国血吸虫病防治杂志, 2020, 32(5): 522-525. [本文引用:1]
[28] CHEN L, CAO C L, LIU Y, et al. Emergency responses to schistosomiasis outbreak during the stage moving towards elimination in China[J]. Chin J Schistosomiasis Control, 2021, 33(6): 570-574. (in Chinese)
陈琳, 曹淳力, 刘阳, . 迈向消除阶段我国血吸虫病突发疫情应急响应[J]. 中国血吸虫病防治杂志, 2021, 33(6): 570-574. [本文引用:1]
[29] ZHANG L J, ZHU H Q, WANG Q, et al. Assessment of schistosomiasis transmission risk along the Yangtze River Basin after the flood disaster in 2020[J]. Chin J Schistosomiasis Control, 2020, 32(5): 464-468, 475. (in Chinese)
张利娟, 祝红庆, 王强, . 2020年长江流域洪涝灾害后血吸虫病传播风险分析[J]. 中国血吸虫病防治杂志, 2020, 32(5): 464-468, 475. [本文引用:1]
[30] XU J, HU W, YANG K, et al. Key points and research priorities of schistosomiasis control in China during the 14th Five-Year Plan Period[J]. Chin J Schistosomiasis Control, 2021, 33(1): 1-6. (in Chinese)
许静, 胡薇, 杨坤, . “十四五”期间我国血吸虫病防治重点及研究方向[J]. 中国血吸虫病防治杂志, 2021, 33(1): 1-6. [本文引用:1]
[31] HONG M, ZHAO W H, LI Y Q, et al. Investigation on plague foci and epidemic risk analysis in Qiaojia County, Yunnan Province[J/OL]. China Trop Med: 1-7[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220625.1102.002.html. (in Chinese)
洪梅, 赵文红, 李玉琼, 等. 云南省巧家县鼠疫疫源地调查及流行风险分析[J/OL]. 中国热带医学: 1-7[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220625.1102.002.html. [本文引用:1]
[32] ZENG X C, LIN Z R, XU X, et al. Investigation of the frequency of kdr mutation of voltage-gated sodium channel in Anopheles sinensis in Yunnan Province[J/OL]. China Trop Med: 1-8[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220507.1729.010html. (in Chinese)
曾旭灿, 林祖锐, 许翔, 等. 云南省中华按蚊电压门控钠离子通道的kdr突变频率调查[J/OL]. 中国热带医学: 1-8[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220507.1729.010.html. [本文引用:1]
[33] WANG L J, XU Y, SUN H, et al. First report of invasive Pomacea snails in Shand ong Province[J]. Chin J Schistosomiasis Control, 2022, 34(4): 407-411. (in Chinese)
王龙江, 许艳, 孙慧, . 山东省首次发现福寿螺入侵[J]. 中国血吸虫病防治杂志, 2022, 34(4): 407-411. [本文引用:1]
[34] ZHANG L, ROHR J, CUI R N, et al. Biological invasions facilitate zoonotic disease emergences[J]. Nat Commun, 2022, 13(1): 1762. [本文引用:1]
[35] XIA F, QU L, HU H T, et al. Establishment and evaluation of a BALB/c mouse model of melioidosis via nasal infection[J/OL]. China Trop Med: 1-15[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220830.1747.006.html. (in Chinese)
夏飞, 屈磊, 胡海涛, 等. 类鼻疽伯克霍尔德菌经鼻感染BALB/c小鼠模型的构建与评价[J/OL]. 中国热带医学: 1-15[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220830.1747.006.html. [本文引用:1]
[36] GARCIA-MIGURA L, HENDRIKSEN R S, FRAILE L, et al. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine[J]. Vet Microbiol, 2014, 170(1/2): 1-9. [本文引用:1]
[37] One Health Institute, Hainan University, Insect-borne Infectious Disease Prevention and Control Expert Group. Expert opinions regarding the research and development of vector-borne diseases in Hainan using a One Health approach[J]. China Trop Med, 2022, 22(6): 493-494. (in Chinese)
海南大学全健康研究院虫媒传染病防控专家组. “全健康”理念下海南省虫媒传染病研究与防控专家建议[J]. 中国热带医学, 2022, 22(6): 493-494. [本文引用:1]
[38] FEI S W, XU J S, S, et al. One health: re-thinking of zoonoses control[J]. Chin J Schistosomiasis Control, 2022, 34(1): 1-6. (in Chinese)
费思伟, 许靖姗, 吕山, . 全健康: 人兽共患病防控的新思考[J]. 中国血吸虫病防治杂志, 2022, 34(1): 1-6. [本文引用:1]
[39] WALTNER-TOEWS D. Zoonoses, One Health and complexity: wicked problems and constructive conflict[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1725): 20160171. [本文引用:1]
[40] ZHOU J X, HOU J R, ZHAO Q Q, et al. Advances of environmental DNA technology in schistosomiasis surveillance[J/OL]. China Trop Med: 1-11[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220617.1946.002.html. (in Chinese)
周己烜, 侯嘉然, 赵倩倩, 等. 环境DNA技术在血吸虫病监测中的应用研究进展[J/OL]. 中国热带医学: 1-11[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220617.1946.002.html. [本文引用:1]
[41] LI C X, WEI B Q, XIONG H M, et al. The study on antiserum of Yersinia pestis phage in Marmot Himalayan blood in Qinghai-Tibet plateau natural plague foci[J/OL]. China Trop Med: 1-9[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.202206101131.002.html. (in Chinese)
李存香, 魏柏青, 熊浩明, 等. 青海高原喜马拉雅旱獭血清中特异性鼠疫噬菌体抗体的检测及分析[J/OL]. 中国热带医学: 1-9[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220610.1131.002.html. [本文引用:1]
[42] SHAO L, ZHAO S, LIU Y H, et al. Establishment and evaluation of a method for detection of Plasmodium by recombinase-aided amplification[J]. China Trop Med, 2022, 22(7): 617-622. (in Chinese)
邵雷, 赵松, 刘燕红, . 重组酶介导等温扩增技术检测疟原虫方法的建立和评价[J]. 中国热带医学, 2022, 22(7): 617-622. [本文引用:1]
[43] QIANG Y, YU Y J, REN G X, et al. Prevalence of Blastocystis in primary and secondary students in Baisha Li Autonomous County[J/OL]. China Trop Med: 1-11[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220901.1401.002.html.
强钰, 余永娟, 任广旭, 等. 海南省白沙黎族自治县中小学生芽囊原虫分子遗传特征分析[J/OL]. 中国热带医学: 1-11[2022-10-08]. http://kns.cnki.net/kcms/detail/46.1064.R.20220901.1401.002.html. [本文引用:1]
[44] SHI L, XIONG C R, LIU M M, et al. Establishment of a deep learning-based visual model for intelligent recognition of Oncomelania hupensis[J]. Chin J Schistosomiasis Control, 2021, 33(5): 445-451. (in Chinese)
施亮, 熊春蓉, 刘毛毛, . 基于深度学习技术的湖北钉螺视觉智能识别模型的建立[J]. 中国血吸虫病防治杂志, 2021, 33(5): 445-451. [本文引用:1]
[45] ZINSSTAG J, UTZINGER J, PROBST-HENSCH N, et al. Towards integrated surveillance-response systems for the prevention of future pand emics[J]. Infect Dis Poverty, 2020, 9(1): 140. [本文引用:1]