环介导等温扩增技术在诊断结核病中的研究进展
罗丽莎, 刘琳, 冯品, 赖霁佳, 陈雪媛, 孔清泉*
西藏自治区人民政府驻成都办事处医院,四川 成都 610041
*通信作者:孔清泉,E-mail: kqqspine@126.com

作者简介:罗丽莎(1995—),女,硕士,初级检验师,研究方向:结核病的疾病分子机制。

摘要

环介导等温扩增(loop-mediated isothermal amplification, LAMP)技术是利用两对特殊设计的引物和链置换活性的DNA聚合酶,在恒温条件下对目的片段进行特异、高效扩增的技术。LAMP技术具有简单、快速、特异、灵敏、经济等优点,因此在结核分枝杆菌的现场快速检测和基层应用中具有广阔前景。基于此,本文主要阐述了LAMP 技术的基本原理和特点、诊断结核病的主要分子标志物,以及利用不同的分子标志物和各种类型的新型技术在诊断肺结核、肺外结核、耐药性结核病中的应用。LAMP 技术在诊断结核病中已经得到了广泛的应用,且具有较高的灵敏性和特异性,但该技术仍存在部分缺陷。本文综述了近年来LAMP 技术在结核病中的应用进展,并对其发展前景进行了展望,以期在资源有限的环境中为结核病的快速诊断提供合理的研究方向。

关键词: 环介导等温扩增技术; 结核病; 诊断
中图分类号:R52 文献标志码:A 文章编号:1009-9727(2022)11-1097-05
Advances in loop-mediated isothermal amplification in the diagnosis of tuberculosis
LUO Li-sha, LIU Lin, FENG Pin, LAI Ji-jia, CHEN Xue-yuan, KONG Qing-quan
Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
Corresponding author: KONG Qing-quan, E-mail: kqqspine@126.com
Abstract

The loop-mediated isothermal amplification (LAMP) technique is a technique for the specific and efficient amplification of target fragments at a constant temperature using two pairs of specially designed primers and a strand displacement activity DNA polymerase. LAMP technique is a simple, rapid, specific, sensitive and cost-effective nucleic acid amplification method, and therefore has a promising future in the field rapid detection of Mycobacterium tuberculosisand grassroots applications. In this review, the basic principles and characteristics of the LAMP technique, the main molecular markers for the diagnosis of tuberculosis, and the use of different molecular markers and various types of novel techniques in the diagnosis of pulmonary tuberculosis, extrapulmonary tuberculosis, and drug-resistant tuberculosis were described. The LAMP technique has been widely used in the diagnosis of tuberculosis with high sensitivity and specificity, but the technique still has some shortcomings. This paper reviews the progress of its application in tuberculosis in recent years and provides an outlook on its development, with a view to providing a rational research direction for rapid diagnosis of tuberculosis in a resource-limited environment.

Keyword: Loop-mediated isothermal amplification; tuberculosis; diagnosis

结核病(tuberculosis, TB)主要由结核分枝杆菌(Mycobacterium tuberculosis, MTB)引起的慢性传染病, 可侵及许多脏器, 以肺部感染最为常见。该病长期以来严重威胁着人类健康, 根据2021年WHO报道, 2020年全球约有990万结核病新发病例, 约150万人死于结核病, TB已成为全球十大头号杀手之一。目前, 全球约有410万名结核病患者尚未被诊断或报告[1]。临床迫切需要提供快速、可靠的诊断方法。因此, 简单、快速、特异、经济的环介导等温扩增(loop-mediated isothermal amplification, LAMP)技术在有限资源的环境中用于检测结核病的领域具有广阔的运用前景[2]

1 LAMP技术的原理和特点
1.1 LAMP技术的原理

LAMP技术是利用两对特殊引物F3/B3、FIP/BIP [3]和具有链置换活性的 DNA (Bst DNA)聚合酶, 在恒温条件下对目的片段进行特异、高效扩增的技术。Bst DNA聚合酶具有非常强的链置换活性, 使LAMP在扩增过程中发生链置换反应, 即DNA聚合酶在延伸新链的过程中如果遇到了下游双链, 可以继续延伸反应并同时将下游双链剥离而产生游离的单链。LAMP技术无需经过PCR反应时双链模板DNA的变性、退火及循环变温过程, 仅在恒温(60~65 ℃)条件下反应, 30~60 min即可完成核酸扩增, 且环引物LF / LB的引入还可进一步缩短反应时间[4]。在LAMP反应过程中产生的焦磷酸镁的白色沉淀物可以通过定性视觉方法和实时定量浊度法检测DNA扩增的浊度法[5]

1.2 LAMP技术的特点

LAMP技术不需要在95 ℃下进行初始变性即可进行链分离, 仍具有高水平的灵敏度[6], 检测限低至每个反应1个拷贝[7]。与PCR和其他等温核酸扩增相比, LAMP反应中使用的Bst DNA聚合酶对生物样品中常见的抑制性物质表现出高耐受性。研究表明, LAMP技术在标本较少的血液[8]和粪便[9]、脑脊液[10]、鼻咽拭子[11]和尿液[12]中仍具备高特异性、高效性。此项技术已在临床中用于多种病原体的检测和诊断, 如细菌、病毒和真菌等[13, 14]

2 LAMP技术诊断结核病的分子标志物

已在结核分枝杆菌基因组中检测到各种移动遗传元件(mobile genetic elements, MGEs)或称为“ 跳跃基因” 。这些元件能够在转座过程中从一条染色体位置移动到另一条染色体位置, 并且他们的动态性质与几种病原菌的表型特征有关。插入序列(insertion sequence, IS)6110 的 MGE 已被广泛用作流行病学研究中的基因型标记[15]。结核分枝杆菌复合群(Mycobacterium tuberculosis complex, MTBC)包括结核分枝杆菌、牛分枝杆菌、非洲分枝杆菌、田鼠分枝杆菌等, MTBC的大多数成员在基因组的重复区域都具有IS6110元件, 这被认为是MTBC进化早期的原始插入位点[16]。由于IS6110在MTBC中具有高度保守性和多个拷贝, 故常被用作MTBC检测分子标记。然而, 存在具有低拷贝或缺失IS6110的MTBC菌株[15]。为了克服基于IS6110的诊断方法带来的缺点, IS1081常被作为辅助标记, 因为他也是MTBC菌株中具有特异性的多拷贝元件, 稳定为5~6个拷贝[17]。迄今为止, 研究已发现多种用于LAMP技术诊断结核病的分子标志物, 包括IS6110IS1081mpb6pstS1sdaAgyrB[18, 19, 20, 21, 22]

3 LAMP技术在诊断肺结核中的应用

Iwamoto等[23]首次报道使用以MTB中的gyrB基因引物为靶向的LAMP技术诊断肺结核, 向反应管中加入SYBR Green, 使扩增可视化。该LAMP测定在分离结核分枝杆菌复合菌株的18个痰标本中的16个中具有阳性反应。自此, 越来越多的研究表明 LAMP可用于结核病的诊断[24, 25, 26]。2013年, Kaewphinit等[27]开发了LAMP技术结合侧向流动试纸(lateral-flow dipstick, LFD)检测临床样本中的MTB, 反应结束后, 在LFD上可检测到与异硫氰酸荧光素标记的DNA扩增产物。此结合技术的优点是缩短了检测时间, 减少了电泳分析步骤, 且数据表明 LAMP-LFD 可以检测低至 5 pg 的MTB基因组 DNA。但是常规探针很可能会发生引物与探针自聚合, Jaroenram等[28]在LAMP-LFD技术上做进一步优化, 引入1组新的引物、DNA 探针系统。即3' 端用dSpacer标记, 以防止探针发生自聚合, 且实现一步法、同步 DNA 杂交的LAMP-LFD对MTB进行超灵敏检测。此外, LAMP与侧向流动生物传感器(lateral flow biosensor, LFB)相结合的方法也常被用来检测MTBC, 其用异硫氰酸荧光素、生物素标记引物和扩增产物, 使 LFB 可视化[20]

常用的单分子标志物gyrBIS6110IS108116S rRNA[25, 29]等是检测肺结核的良好标志, 多靶向环介导扩增(multi-targeted loop mediated amplification PCR, MLAMP)具有更高的灵敏性和特异性。Wang等[20]基于LAMP-LFB技术采用 MTBC 的IS 6110IS 1081多靶标设计两组引物, 可检测到低至 10 fg 的DNA, 分析灵敏度高于基于单靶标的 LAMP检测[27]。此外, IS1081IS6110的组合可以保证流行的 MTBC 菌株的高灵敏性和高特异性。Yang等[30]通过检测参考菌株和临床标本证明IS6110mtp40MLAMP具有优异的特异性和灵敏性。多靶向分子标志物弥补了单靶标的不足之处, MLAMP方法可有效提高诊断性能。

4 LAMP技术在诊断肺外结核中的应用

结核病感染最常见的部位是肺部, 但通过血液传播可以到达全身的各个系统, 导致肺外结核病(extrapulmonary tuberculosis, EPTB), 包括骨骼系统结核、泌尿系统结核、消化系统结核等。EPTB约占结核病例总数的22%[31]。EPTB的诊断非常具有挑战性, 因为通常需要进行侵入性手术才能获得脑脊液和胸腔积液等标本, 并且EPTB 标本的培养灵敏性较低。Yu等[32]将LAMP技术与临床疑似EPTB的复合参比标准和培养物的性能进行回顾研究, 通过二元随机效应模型进行荟萃分析, 标本包括脑脊液、胸腔积液、滑液、脓液、淋巴腺细针穿刺等, 研究发现LAMP在检测EPTB方面具有良好的诊断效果, 且使用mpb64靶序列的诊断效果优于IS6110。随着LAMP技术的发展, MLAMP技术多靶向分子标志物可以提高肺外样本的检出率。MLAMP技术快速、易用性和低成本使其成为资源有限的环境中的绝佳替代品[33]

4.1 LAMP技术在结核性胸膜炎中的应用

EPTB最常见的形式是结核性胸膜炎[34](tuberculous pleurisy, TBP)。结核性胸膜炎的确诊主要是通过证明结核杆菌的存在或通过对胸膜组织进行肉芽肿的组织学检查。但结核性胸腔积液含有的MTB载量较低, 且收集胸膜组织进行组织学检查具有侵入性, 并且在资源有限的环境中其使用受到限制。一些生物标志物用于结核性胸膜炎的诊断, 如腺苷脱氨酶(adenosine deami-nase, ADA)和IFN-γ 。Yang等[35]以渗出性胸腔积液患者作为研究对象, 使用基于IS1081的LAMP技术诊断TBP, 具有与Xpert MTB/RIF相当的灵敏度和特异度, 优于胸水涂片镜检法。特别是在抗酸染色阴性和分枝杆菌培养阴性胸腔积液的患者中, LAMP技术可以有效辅助诊断TBP。

4.2 LAMP技术在骨和关节结核中的应用

骨和关节结核(osteoarticular tuberculosis, OATB)见于5%~10%的肺外结核病例, 延迟诊断OATB可造成患者骨骼畸形和神经系统后遗症。骨结核患者也可以没有肺结核病史, 属于结核菌的隐匿性感染。结核性骨髓炎和关节炎通常由原发感染分枝杆菌血症期间残存在骨中的杆菌再激活引起[36], 在极少数情况下, 通过椎旁静脉丛和淋巴引流从肺部直接扩散也会导致骨骼系统结核[37]。Khan等[21]使用分子标志物为mpt64pstS1的MLAMP技术, 用于检测OATB患者的结核分枝杆菌。该研究发现, 在确诊和疑似OATB病例中, MLAMP在总OATB病例中达到的灵敏度明显高于多重PCR和Xpert MTB/RIF方法。

4.3 LAMP技术在胃肠道结核中的应用

EPTB 约占所有TB 病例的20%, 而胃肠道结核(gastrointestinal tuberculosis, GITB)约占全部EPTB 病例的10%[38]。GITB 具有与其他几种胃肠道疾病相似的多变临床特征, 因此使诊断具有挑战性。 内窥镜检查、超声检查和其他成像技术通常无法区分 GITB 与其他形式的炎症性肠病, 尤其是克罗恩病[39]。64% 的 GITB 涉及回盲部[40], 且该区域具有相对较高的生理停滞、吸收力和较低的消化活动[41]。此外, 由于该部位的淋巴聚集体数量较多, 结核分枝杆菌载量高于肠道中的其他部位, 并且远高于腹膜和腹水。Sharma等[42]以35例临床疑似 GITB 患者的回盲部活检样本和 30 例非结核病对照受试者为研究对象, 用回盲部活检样本使用IS6110mpb64靶标对结核分枝杆菌复合体, 与单靶点、IS6110 PCR 和培养进行比较, 发现多靶点的灵敏性为85.71%, 且具有高特异性。

5 LAMP技术在检测耐药性结核病中的应用

耐多药结核病 (multidrug-resistant tuberculosis, MDR-TB)对结核病治疗中的两种关键药物异烟肼(isoniazid, INH)和利福平(rifampicin, RIF)具有耐药性。INH最常见的突变区域在 katGinhA 基因, katG S315IS315NS315T 以及组合的移码和过早终止密码子是 INH 抗性的高可信度标记, 而 inhA 启动子15突变是一种中等置信度的抗性突变[43]。大约78%~100% MTB利福平耐药在RNA聚合酶亚基β (rpoB)基因的81 bp区域(利福平耐药性决定区), 其与 RIF抗性相关性最高[44]rpoB D516VH526DH526YS531L是高置信度标记, 而L533P是RIF抗性的中等可信度标记。MDR-LAMP 检测是一种基于 LAMP 平台的人工突变位点检测方法探针检测, 涵盖rpoBkatGinhA 基因的重叠 RIF 抗性决定区以及 rpoB 基因的上述突变、katG 基因的密码子 315 处的突变以及 inhA 基因的启动子 15 处的突变。Liu等[45]使用从中国结核病国家参考实验室获得的 100 株MTB分离株, 以异烟肼和利福平的表型耐药以及全基因组测序作为参考标准, 评估 MDR-LAMP 检测方法。该研究发现MDR-LAMP 对异烟肼和利福平耐药性检测的灵敏性和特异性较高。针对RIF的耐药性, Takarada等[46]开发了使用LAMP结合单标签杂交(single-tag hybridization, STH)色谱打印阵列条(chromatographic printed array strip, PAS)方法, 该技术能够同时检测利福平耐药性决定区中的4个突变, C1349 T、A1295C、G1303 T、A1304 T。这是一种简单快速地检测临床分离株中点突变的方法, 作为床旁检测技术可以满足耐药细菌流行地区的需求, 尤其是发展中国家。

6 小结与展望

当前LAMP 技术在诊断结核病中已经得到了广泛的应用, 但该技术仍存在部分缺陷, 如易产生假阳性, 扩增的梯度性条带的带型存在差异, 集成检测设备不成熟, 引物设计难度大等。为了克服以上缺点, 不断有新技术涌现且有效提高LAMP 技术检测MTB的特异性、灵敏性和便携性, 如将LAMP技术与基于纳米颗粒的LFB[47]、CRISPR-Cas12[48]及微流控芯片等技术的联合应用。总之, LAMP 技术作为一种新型核酸扩增检测技术, 在现场快速检测和基层应用于诊断结核病的领域较广阔, 但仍需要不断深入研究, 推动医疗健康事业的发展。

利益冲突声明 所有作者声明不存在利益冲突

编辑:王佳燕

参考文献
[1] World Health Organization. Global tuberculosis report 2021. WHO report. Geneva, 2021. [本文引用:1]
[2] ACHARYA B, ACHARYA A, GAUTAM S, et al. Advances in diagnosis of tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis[J]. Mol Biol Rep, 2020, 47(5): 4065-4075. [本文引用:1]
[3] NAGAMINE K, HASE T, NOTOMI T. Accelerated reaction by loop-mediated isothermal amplification using loop primers[J]. Mol Cell Probes, 2002, 16(3): 223-229. [本文引用:1]
[4] ZHANG L, YIN Y P, WANG Z K. The advances and development of loop-mediated isothermal amplification method[J]. Guizhou Agric Sci, 2009, 37(6): 21-25. (in Chinese)
张仑, 殷幼平, 王中康. 环介导等温扩增技术的研究进展[J]. 贵州农业科学, 2009, 37(6): 21-25. [本文引用:1]
[5] ZHANG J H, ZHU J, REN H, et al. Rapid visual detection of highly pathogenic Streptococcus suis serotype 2 isolates by use of loop-mediated isothermal amplification[J]. J Clin Microbiol, 2013, 51(10): 3250-3256. [本文引用:1]
[6] SUZUKI R, IHIRA M, ENOMOTO Y, et al. Heat denaturation increases the sensitivity of the cytomegalovirus loop-mediated isothermal amplification method[J]. Microbiol Immunol, 2010, 54(8): 466-470. [本文引用:1]
[7] PYRC K, MILEWSKA A, POTEMPA J. Development of loop-mediated isothermal amplification assay for detection of human coronavirus-NL63[J]. J Virol Methods, 2011, 175(1): 133-136. [本文引用:1]
[8] IHIRA M, SUGIYAMA H, ENOMOTO Y, et al. Direct detection of human herpesvirus 6 DNA in serum by variant specific loop-mediated isothermal amplification in hematopoietic stem cell transplant recipients[J]. J Virol Methods, 2010, 167(1): 103-106. [本文引用:1]
[9] FRANCOIS P, TANGOMO M, HIBBS J, et al. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications[J]. FEMS Immunol Med Microbiol, 2011, 62(1): 41-48. [本文引用:1]
[10] KIM D W, KILGORE P E, KIM E J, et al. Loop-mediated isothermal amplification assay for detection of Haemophilus influenzae type b in cerebrospinal fluid[J]. J Clin Microbiol, 2011, 49(10): 3621-3626. [本文引用:1]
[11] ANASTASIOU O E, HOLTKAMP C, SCHÄFER M, et al. Fast detection of SARS-CoV-2 RNA directly from respiratory samples using a loop-mediated isothermal amplification (LAMP) test[J]. Viruses, 2021, 13(5): 801. [本文引用:1]
[12] RIVOARILALA L O, VICTOR J, CRUCITTI T, et al. LAMP assays for the simple and rapid detection of clinically important urinary pathogens including the detection of resistance to 3rd generation cephalosporins[J]. BMC Infect Dis, 2021, 21(1): 1037. [本文引用:1]
[13] 尹小毛, 唐慧芬, 王治伟. LAMP检测三种常见泌尿生殖道支原体的应用评价[J]. 热带医学杂志, 2021, 21(7): 857-859. [本文引用:1]
[14] 孙怡菲, 蒋婷婷, 李健. 环介导等温扩增技术诊断疟疾准确性的meta分析[J]. 热带医学杂志, 2021, 21(3): 301-306, 315. [本文引用:1]
[15] MCEVOY C R E, FALMER A A, VAN PITTIUS N C G, et al. The role of IS6110 in the evolution of Mycobacterium tuberculosis[J]. Tuberculosis, 2007, 87(5): 393-404. [本文引用:2]
[16] FOMUKONG N, BEGGS M, EL HAJJ H, et al. Differences in the prevalence of IS6110 insertion sites in Mycobacterium tuberculosisstrains: low and high copy number of IS6110[J]. Tuber Lung Dis, 1998, 78(2): 109-116. [本文引用:1]
[17] VAN SOOLINGEN D, HERMANS P W, DE HAAS P E, et al. Insertion element IS1081-associated restriction fragment length polymorphisms in Mycobacterium tuberculosis complex species: a reliable tool for recognizing Mycobacterium bovis BCG[J]. J Clin Microbiol, 1992, 30(7): 1772-1777. [本文引用:1]
[18] ARYAN E, MAKVANDI M, FARAJZADEH A, et al. A novel and more sensitive loop-mediated isothermal amplification assay targeting IS6110for detection of Mycobacterium tuberculosiscomplex[J]. Microbiol Res, 2010, 165(3): 211-220. [本文引用:1]
[19] SHARMA M, SHARMA K, SHARMA A, et al. Loop-mediated isothermal amplification (LAMP) assay for speedy diagnosis of tubercular lymphadenitis: the multi-targeted 60-minute approach[J]. Tuberculosis, 2016, 100: 114-117. [本文引用:1]
[20] WANG X Y, WANG G R, WANG Y C, et al. Development and preliminary application of multiplex loop-mediated isothermal amplification coupled with lateral flow biosensor for detection of Mycobacterium tuberculosiscomplex[J]. Front Cell Infect Microbiol, 2021, 11: 666492. [本文引用:3]
[21] KHAN A, KAMRA E, SINGH R, et al. Diagnosis of osteoarticular tuberculosis: multi-targeted loop-mediated isothermal amplification assay versus multiplex PCR[J]. Future Microbiol, 2021, 16: 935-948. [本文引用:2]
[22] JOON D, NIMESH M, GUPTA S, et al. Development and evaluation of rapid and specific sdaA LAMP-LFD assay with Xpert MTB/RIF assay for diagnosis of tuberculosis[J]. J Microbiol Methods, 2019, 159: 161-166. [本文引用:1]
[23] IWAMOTO T, SONOBE T, HAYASHI K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosiscomplex, M. avium, and M. intracellulare in sputum samples[J]. J Clin Microbiol, 2003, 41(6): 2616-2622. [本文引用:1]
[24] ENOSAWA M, KAGEYAMA S, SAWAI K, et al. Use of loop-mediated isothermal amplification of the IS900 sequence for rapid detection of cultured Mycobacterium avium subsp. paratuberculosis[J]. J Clin Microbiol, 2003, 41(9): 4359-4365. [本文引用:1]
[25] BOEHME C C, NABETA P, HENOSTROZA G, et al. Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries[J]. J Clin Microbiol, 2007, 45(6): 1936-1940. [本文引用:2]
[26] NEONAKIS I K, SPANDIDOS D A, PETINAKI E. Use of loop-mediated isothermal amplification of DNA for the rapid detection of Mycobacterium tuberculosis in clinical specimens[J]. Eur J Clin Microbiol Infect Dis, 2011, 30(8): 937-942. [本文引用:1]
[27] KAEWPHINIT T, ARUNRUT N, KIATPATHOMCHAI W, et al. Detection of Mycobacterium tuberculosis by using loop-mediated isothermal amplification combined with a lateral flow dipstick in clinical samples[J]. Biomed Res Int, 2013, 2013: 926230. [本文引用:2]
[28] JAROENRAM W, KAMPEERA J, ARUNRUT N, et al. Ultrasensitive detection of Mycobacterium tuberculosis by a rapid and specific probe-triggered one-step, simultaneous DNA hybridization and isothermal amplification combined with a lateral flow dipstick[J]. Sci Rep, 2020, 10: 16976. [本文引用:1]
[29] PANDEY B D, POUDEL A, YODA T, et al. Development of an in-house loop-mediated isothermal amplification (LAMP) assay for detection of Mycobacterium tuberculosisand evaluation in sputum samples of Nepalese patients[J]. J Med Microbiol, 2008, 57(Pt 4): 439-443. [本文引用:1]
[30] YANG X G, HUANG J F, CHEN X, et al. Rapid and visual differentiation of Mycobacterium tuberculosis from the Mycobacterium tuberculosiscomplex using multiplex loop-mediated isothermal amplification coupled with a nanoparticle-based lateral flow biosensor[J]. Front Microbiol, 2021, 12: 708658. [本文引用:1]
[31] NORBIS L, ALAGNA R, TORTOLI E, et al. Challenges and perspectives in the diagnosis of extrapulmonary tuberculosis[J]. Expert Rev Anti Infect Ther, 2014, 12(5): 633-647. [本文引用:1]
[32] YU G C, SHEN Y Q, ZHONG F M, et al. Diagnostic accuracy of the loop-mediated isothermal amplification assay for extrapulmonary tuberculosis: a meta-analysis[J]. PLoS One, 2018, 13(6): e0199290. [本文引用:1]
[33] SHARMA K, SINGH S, SHARMA M, et al. Multi-targeted loop mediated amplification PCR for diagnosis of extrapulmonary tuberculosis[J]. Indian J Tuberc, 2020, 67(4): 479-482. [本文引用:1]
[34] MEHTA J B, DUTT A, HARVILL L, et al. Epidemiology of extrapulmonary tuberculosis[J]. Chest, 1991, 99(5): 1134-1138. [本文引用:1]
[35] YANG B, WANG X, LI H, et al. Comparison of loop-mediated isothermal amplification and real-time PCR for the diagnosis of tuberculous pleurisy[J]. Lett Appl Microbiol, 2011, 53(5): 525-531. [本文引用:1]
[36] PIGRAU-SERRALLACH C, RODRÍGUEZ-PARDO D. Bone and joint tuberculosis[J]. Eur Spine J, 2013, 22(4): 556-566. [本文引用:1]
[37] GARDAM M, LIM S. Mycobacterial osteomyelitis and arthritis[J]. Infect Dis Clin North Am, 2005, 19(4): 819-830. [本文引用:1]
[38] JIN T, FEI B Y, ZHANG Y, et al. The diagnostic value of polymerase chain reaction for Mycobacterium tuberculosis to distinguish intestinal tuberculosis from Crohn's disease: a meta-analysis[J]. Saudi J Gastroenterol, 2017, 23(1): 3-10. [本文引用:1]
[39] KHAN I A, NAYAK B, MARKANDEY M, et al. Differential prevalence of pathobionts and host gene polymorphisms in chronic inflammatory intestinal diseases: Crohn's disease and intestinal tuberculosis[J]. PLoS One, 2021, 16(8): e0256098. [本文引用:1]
[40] DEBI U, RAVISANKAR V, PRASAD K K, et al. Abdominal tuberculosis of the gastrointestinal tract: revisited[J]. World J Gastroenterol, 2014, 20(40): 14831-14840. [本文引用:1]
[41] AWASTHI S, SAXENA M, AHMAD F, et al. Abdominal tuberculosis: a diagnostic dilemma[J]. J Clin Diagn Res, 2015, 9(5): EC01-EC03. [本文引用:1]
[42] SHARMA M, SINHA S K, SHARMA M, et al. Challenging diagnosis of gastrointestinal tuberculosis made simpler with multi-targeted loop-mediated isothermal amplification assay[J]. Eur J Gastroenterol Hepatol, 2020, 32(8): 971-975. [本文引用:1]
[43] SEIFERT M, CATANZARO D, CATANZARO A, et al. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review[J]. PLoS One, 2015, 10(3): e0119628. [本文引用:1]
[44] TELENTI A, IMBODEN P, MARCHESI F, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis[J]. Lancet, 1993, 341(8846): 647-651. [本文引用:1]
[45] LIU C F, SONG Y M, HE P, et al. Evaluation of multidrug resistant loop-mediated isothermal amplification assay for detecting the drug resistance of Mycobacterium tuberculosis[J]. Biomed Environ Sci, 2021, 34(8): 616-622. [本文引用:1]
[46] TAKARADA Y, KODERA T, KOBAYASHI K, et al. Rapid detection of rifampicin-resistant Mycobacterium tuberculosis, based on isothermal DNA amplification and DNA chromatography[J]. J Microbiol Methods, 2020, 177: 106062. [本文引用:1]
[47] CHEN X, HUANG J F, XIAO Z Y, et al. Highly specific and sensitive detection of the Mycobacterium tuberculosiscomplex using multiplex loop-mediated isothermal amplification combined with a nanoparticle-based lateral flow biosensor[J]. Braz J Microbiol, 2021, 52(3): 1315-1325. [本文引用:1]
[48] WANG Y, LI J Q, LI S J, et al. LAMP-CRISPR-Cas12-based diagnostic platform for detection of Mycobacterium tuberculosis complex using real-time fluorescence or lateral flow test[J]. Microchim Acta, 2021, 188(10): 347. [本文引用:1]